Mushroom classification challenge

Predict whether the mushroom is edible (e) or poisonous (p). [ver. 1.0.0]

# submitter when ver. description dev-0 Accuracy test-A Accuracy
123 [anonymized] 2019-06-18 12:29 1.0.0 grzyby logistyczne ready-made logistic-regression 1.0000 1.0000
122 [anonymized] 2019-06-16 08:47 1.0.0 grzyby ready ready-made logistic-regression 1.0000 1.0000
121 [anonymized] 2019-06-16 08:33 1.0.0 mushrooms ready-made ready-made logistic-regression 1.0000 1.0000
120 [anonymized] 2019-06-16 08:16 1.0.0 grzyby ready-made logistic-regression 1.0000 1.0000
119 [anonymized] 2019-06-15 14:33 1.0.0 jadalne vs niejadalne ready-made logistic-regression 1.0000 1.0000
118 [anonymized] 2019-06-12 19:30 1.0.0 mushroom ready made ready-made logistic-regression 1.0000 1.0000
117 [anonymized] 2019-06-10 20:48 1.0.0 knn knn 1.0000 1.0000
245 [anonymized] 2019-06-10 20:39 1.0.0 change to naive bayes naive-bayes 0.9268 0.9389
116 [anonymized] 2019-06-10 20:28 1.0.0 logistic reg logistic-regression 1.0000 1.0000
115 [anonymized] 2019-06-10 12:19 1.0.0 grzybki knn knn 1.0000 1.0000
198 [anonymized] 2019-06-10 12:17 1.0.0 Naiwne Grzybki naive-bayes 0.9596 0.9608
114 [anonymized] 2019-06-05 14:05 1.0.0 grzybki ready logistic-regression 1.0000 1.0000
113 [anonymized] 2019-06-03 14:46 1.0.0 Logistic regression ready-made logistic-regression 1.0000 1.0000
112 [anonymized] 2019-06-02 16:03 1.0.0 ready-made-mushrooms ready-made logistic-regression 1.0000 1.0000
235 [anonymized] 2019-06-02 08:14 1.0.0 Mushrooms - rozwiązanie ready-made ready-made logistic-regression 0.9394 0.9469
111 [anonymized] 2019-06-01 23:00 1.0.0 mushrooms1 ready-made logistic-regression 1.0000 1.0000
110 [anonymized] 2019-06-01 21:18 1.0.0 jadalne vs niejadalne ready-made logistic-regression 1.0000 1.0000
109 [anonymized] 2019-06-01 20:00 1.0.0 grzyby self-made logistic-regression 1.0000 1.0000
108 [anonymized] 2019-06-01 17:47 1.0.0 knn knn 1.0000 1.0000
309 [anonymized] 2019-06-01 17:35 1.0.0 bayes naive-bayes umz-2019-challenge 0.8093 0.8189
107 [anonymized] 2019-06-01 14:56 1.0.0 grzyby 1.0000 1.0000
197 [anonymized] 2019-06-01 14:37 1.0.0 grzyby10 ready-made logistic-regression 0.9722 0.9654
338 [anonymized] 2019-06-01 08:22 1.0.0 logistic regression ready made ready-made logistic-regression 0.4230 0.4464
106 [anonymized] 2019-05-31 15:57 1.0.0 grzybki ready-made logistic-regression 1.0000 1.0000
105 [anonymized] 2019-05-28 14:02 1.0.0 Grzyb logistic-regression 1.0000 1.0000
265 [anonymized] 2019-05-28 14:01 1.0.0 grzbkiKNN knn 0.9205 0.9123
104 [anonymized] 2019-05-26 11:50 1.0.0 add load data 1.0000 1.0000
103 [anonymized] 2019-05-22 21:02 1.0.0 Mushrooms logistic regression ready-made logistic-regression 1.0000 1.0000
102 [anonymized] 2019-05-22 17:15 1.0.0 regresja log na grzybach ready-made logistic-regression 1.0000 1.0000
310 [anonymized] 2019-05-22 14:26 1.0.0 logistic-regression-selfmade self-made logistic-regression 0.7247 0.7532
101 [anonymized] 2019-05-22 09:11 1.0.0 logistic-regression-readymade ready-made logistic-regression 1.0000 1.0000
100 [anonymized] 2019-05-22 06:58 1.0.0 grzybkiknn knn 1.0000 1.0000
99 [anonymized] 2019-05-20 12:26 1.0.0 KNN MUSH knn N/A 1.0000
98 [anonymized] 2019-05-19 20:42 1.0.0 many features knn 1.0000 1.0000
97 [anonymized] 2019-05-19 20:05 1.0.0 knn knn 1.0000 1.0000
96 [anonymized] 2019-05-19 19:52 1.0.0 KNN knn 1.0000 1.0000
95 [anonymized] 2019-05-19 19:13 1.0.0 Zadanie06 knn 1.0000 1.0000
363 [anonymized] 2019-05-19 17:21 1.0.0 mushrooms knn knn umz-2019-challenge N/A N/A
94 [anonymized] 2019-05-19 16:27 1.0.0 mushrooms 3 commit ready-made logistic-regression 1.0000 1.0000
362 [anonymized] 2019-05-19 16:19 1.0.0 mushrooms 1st commit 1.0000 N/A
93 [anonymized] 2019-05-19 13:25 1.0.0 LogicalRegression 1.3 ready-made logistic-regression 1.0000 1.0000
92 [anonymized] 2019-05-19 13:02 1.0.0 kraina-grzbow ready-made logistic-regression 1.0000 1.0000
91 [anonymized] 2019-05-17 17:06 1.0.0 knn knn umz-2019-challenge 1.0000 1.0000
90 [anonymized] 2019-05-17 10:51 1.0.0 knnka knn umz-2019-challenge 1.0000 1.0000
89 [anonymized] 2019-05-17 10:18 1.0.0 knn knn 1.0000 1.0000
178 [anonymized] 2019-05-16 13:36 1.0.0 swojaNazwa knn 0.9874 0.9850
157 [anonymized] 2019-05-16 13:29 1.0.0 grzybki knn knn 0.9962 0.9931
169 [anonymized] 2019-05-16 13:29 1.0.0 mowiemowie knn 0.9949 0.9885
88 [anonymized] 2019-05-15 07:21 1.0.0 KNN knn 1.0000 1.0000
166 [anonymized] 2019-05-14 13:54 1.0.0 mushroomsLog logistic-regression 0.9949 0.9919
87 [anonymized] 2019-05-14 12:58 1.0.0 w lesie knn 1.0000 1.0000
301 [anonymized] 2019-05-14 12:40 1.0.0 naive mashrooms naive-bayes 0.9066 0.9100
151 [anonymized] 2019-05-14 12:28 1.0.0 knn knn 0.9949 0.9954
86 [anonymized] 2019-05-14 12:28 1.0.0 knnashrooms knn 1.0000 1.0000
85 [anonymized] 2019-05-14 12:19 1.0.0 KNeighborsClassifier knn 1.0000 1.0000
145 [anonymized] 2019-05-14 12:16 1.0.0 knn knn 1.0000 0.9977
142 [anonymized] 2019-05-14 12:07 1.0.0 knn knn 0.9975 0.9988
84 [anonymized] 2019-05-14 12:01 1.0.0 kryminalni knn 1.0000 1.0000
83 [anonymized] 2019-05-14 11:51 1.0.0 lustereczko naive-bayes 1.0000 1.0000
82 [anonymized] 2019-05-13 16:35 1.0.0 knn knn 1.0000 1.0000
300 [anonymized] 2019-05-13 16:27 1.0.0 bayes1 naive-bayes 0.9066 0.9100
141 [anonymized] 2019-05-13 11:52 1.0.0 knn solution for k=3 knn 0.9962 0.9988
361 [anonymized] 2019-05-13 11:48 1.0.0 knn solution for k=3 0.9975 N/A
81 [anonymized] 2019-05-12 22:49 1.0.0 UMZ2019-06 - K nearest neighbors knn umz-2019-challenge 1.0000 1.0000
80 [anonymized] 2019-05-12 22:04 1.0.0 psylocybinka knn 1.0000 1.0000
299 [anonymized] 2019-05-12 21:32 1.0.0 grzybki jeszcze raz naive-bayes 0.9066 0.9100
192 [anonymized] 2019-05-12 20:53 1.0.0 naive bayes naive-bayes 0.9886 0.9792
360 [anonymized] 2019-05-12 19:43 1.0.0 mushroom Naive Bayes naive-bayes umz-2019-challenge N/A N/A
298 [anonymized] 2019-05-12 17:06 1.0.0 Naive Bayes naive-bayes 0.9066 0.9100
246 [anonymized] 2019-05-12 16:39 1.0.0 naive bayes naive-bayes 0.9280 0.9343
359 [anonymized] 2019-05-12 16:29 1.0.0 naive bayes N/A N/A
297 [anonymized] 2019-05-11 21:08 1.0.0 Zadanie05 naive-bayes 0.9066 0.9100
165 [anonymized] 2019-05-11 13:24 1.0.0 baybay naive-bayes umz-2019-challenge 0.9924 0.9919
263 [anonymized] 2019-05-11 13:03 1.0.0 UMZ2019-05 - Naive Bayes naive-bayes 0.9230 0.9158
184 [anonymized] 2019-05-10 12:34 1.0.0 NB naive-bayes 0.9899 0.9815
164 [anonymized] 2019-05-10 11:37 1.0.0 Naive Bayes with dropped columns naive-bayes 0.9949 0.9919
173 [anonymized] 2019-05-09 21:31 1.0.0 Naiwny Bayes naive-bayes 0.9924 0.9873
251 [anonymized] 2019-05-09 11:27 1.0.0 naiwne grzybki naive-bayes 0.9242 0.9273
79 [anonymized] 2019-05-09 10:00 1.0.0 my solution knn knn 1.0000 1.0000
78 [anonymized] 2019-05-08 20:09 1.0.0 knn musrooms knn 1.0000 1.0000
296 [anonymized] 2019-05-08 19:45 1.0.0 Naive bayes naive-bayes 0.9066 0.9100
262 [anonymized] 2019-05-07 23:18 1.0.0 Bayes grzyby 1 naive-bayes 0.9230 0.9158
140 [anonymized] 2019-05-07 23:03 1.0.0 Grzyby KNN 1 knn 0.9987 0.9988
195 [anonymized] 2019-05-07 19:48 1.0.0 naive bayes naive-bayes 0.9646 0.9689
77 [anonymized] 2019-05-07 19:38 1.0.0 knn dla 3 knn umz-2019-challenge 1.0000 1.0000
330 [anonymized] 2019-05-07 19:33 1.0.0 knn dla 3 0.4987 0.5052
319 [anonymized] 2019-05-07 19:31 1.0.0 knn dla 3 0.5909 0.6113
332 [anonymized] 2019-05-07 19:30 1.0.0 knn dla 3 1.0000 0.4948
76 [anonymized] 2019-05-07 15:07 1.0.0 rozwiazanie 07052019 1706 knn 1.0000 1.0000
295 [anonymized] 2019-05-07 15:00 1.0.0 rozwiazanie 07052019 1659 naive-bayes 0.9066 0.9100
163 [anonymized] 2019-05-07 14:17 1.0.0 grzybki naive-bayes 0.9949 0.9919
294 [anonymized] 2019-05-07 14:10 1.0.0 solution with naive bayes ready-made naive-bayes umz-2019-challenge 0.9066 0.9100
75 [anonymized] 2019-05-07 14:08 1.0.0 solution with KNN ready-made knn umz-2019-challenge 1.0000 1.0000
177 [anonymized] 2019-05-07 14:04 1.0.0 MojeGrzybki naive-bayes 0.9874 0.9850
162 [anonymized] 2019-05-07 14:03 1.0.0 bayess.py naive-bayes 0.9949 0.9919
156 [anonymized] 2019-05-07 13:59 1.0.0 naiwne rozwiazanie naive-bayes 0.9962 0.9931
168 [anonymized] 2019-05-07 13:59 1.0.0 dobrywynik naive-bayes 0.9949 0.9885
74 [anonymized] 2019-05-07 13:24 1.0.0 grzybkiKNN knn 1.0000 1.0000
194 [anonymized] 2019-05-07 13:22 1.0.0 grzybkiNB naive-bayes 0.9646 0.9689
73 [anonymized] 2019-05-07 13:19 1.0.0 grzybki logic logistic-regression 1.0000 1.0000
72 [anonymized] 2019-05-07 13:18 1.0.0 grzybki logistic-regression 1.0000 1.0000
139 [anonymized] 2019-05-07 13:16 1.0.0 grzybki nb naive-bayes 1.0000 0.9988
138 [anonymized] 2019-05-07 13:05 1.0.0 GaussianNB naive-bayes 0.9987 0.9988
261 [anonymized] 2019-05-07 12:44 1.0.0 bayes naive-bayes 0.9230 0.9158
175 [anonymized] 2019-05-07 12:41 1.0.0 GaussianNB naive-bayes 0.9912 0.9862
71 [anonymized] 2019-05-07 12:40 1.0.0 knn solution knn 1.0000 1.0000
191 [anonymized] 2019-05-07 12:40 1.0.0 GaussianNB naive-bayes 0.9886 0.9792
70 [anonymized] 2019-05-07 12:32 1.0.0 grzybyKNN knn 1.0000 1.0000
264 [anonymized] 2019-05-07 12:23 1.0.0 GrzybkiK nearest neighbors knn 0.9205 0.9123
69 [anonymized] 2019-05-07 12:16 1.0.0 naive bayes naive-bayes 0.9596 1.0000
306 [anonymized] 2019-05-07 12:15 1.0.0 GrzybkiNaive naive-bayes 0.8826 0.8893
190 [anonymized] 2019-05-07 12:15 1.0.0 my solution naive-bayes 0.9886 0.9792
137 [anonymized] 2019-05-07 12:08 1.0.0 grzybyNB naive-bayes 1.0000 0.9988
172 [anonymized] 2019-05-07 12:05 1.0.0 grzybyKNN knn 0.9924 0.9873
68 [anonymized] 2019-05-06 22:31 1.0.0 neighbourhood knn 1.0000 1.0000
67 [anonymized] 2019-05-06 12:58 1.0.0 Mushroom KNN knn umz-2019-challenge 1.0000 1.0000
308 [anonymized] 2019-05-06 12:32 1.0.0 NB naive-bayes 0.8093 0.8189
171 [anonymized] 2019-05-06 10:18 1.0.0 Naive Bayes, Mushroom challenge naive-bayes umz-2019-challenge 0.9760 0.9873
66 [anonymized] 2019-05-06 10:04 1.0.0 Regresja logistyczna, Mushroom challenge logistic-regression umz-2019-challenge N/A 1.0000
293 [anonymized] 2019-05-04 19:59 1.0.0 BAY-corrected naive-bayes 0.9066 0.9100
65 [anonymized] 2019-05-03 18:26 1.0.0 m u s h r o o m s knn 1.0000 1.0000
292 [anonymized] 2019-05-03 18:19 1.0.0 his name was Thomas Bayes naive-bayes 0.9066 0.9100
64 [anonymized] 2019-05-03 15:19 1.0.0 KNN oh that is good knn 1.0000 1.0000
291 [anonymized] 2019-05-03 15:11 1.0.0 Bayes was a good man naive-bayes 0.9066 0.9100
148 [anonymized] 2019-04-30 21:54 1.0.0 7 cech 1.0000 0.9965
63 [anonymized] 2019-04-30 21:47 1.0.0 first solution logistic-regression umz-2019-challenge 1.0000 1.0000
233 [anonymized] 2019-04-30 19:30 1.0.0 Logistic Regression logistic-regression 0.9432 0.9481
62 [anonymized] 2019-04-30 19:23 1.0.0 check logistic-regression 1.0000 1.0000
244 [anonymized] 2019-04-30 16:14 1.0.0 Zadanie04 logistic-regression 0.9394 0.9423
346 [anonymized] 2019-04-30 15:55 1.0.0 Zadanie04 0.0000 0.0000
161 [anonymized] 2019-04-30 14:18 1.0.0 diamencik logistic-regression 0.9949 0.9919
304 [anonymized] 2019-04-30 14:07 1.0.0 Grzybki123 logistic-regression 0.9167 0.9066
61 [anonymized] 2019-04-30 14:07 1.0.0 Najnowsza wersja grzybów logistic-regression 1.0000 1.0000
136 [anonymized] 2019-04-30 13:08 1.0.0 afcnr1 logistic-regression 1.0000 0.9988
160 [anonymized] 2019-04-30 13:07 1.0.0 my solutioon logistic-regression 0.9949 0.9919
159 [anonymized] 2019-04-30 12:41 1.0.0 taktak logistic-regression 0.9949 0.9919
170 [anonymized] 2019-04-30 12:39 1.0.0 grzybyNB naive-bayes 0.9924 0.9873
183 [anonymized] 2019-04-30 12:38 1.0.0 grzyb 3 knn 0.9836 0.9815
260 [anonymized] 2019-04-30 12:34 1.0.0 pieczarki vol. 3 knn 0.9268 0.9158
307 [anonymized] 2019-04-30 12:31 1.0.0 grzyb 2 naive-bayes 0.8295 0.8304
60 [anonymized] 2019-04-30 12:31 1.0.0 my mushrooms logistic-regression knn 1.0000 1.0000
259 [anonymized] 2019-04-30 12:29 1.0.0 pieczarki vol. 2 naive-bayes 0.9268 0.9158
59 [anonymized] 2019-04-30 12:23 1.0.0 grzyby logistic-regression 1.0000 1.0000
58 [anonymized] 2019-04-30 12:09 1.0.0 grzybki KNN knn 1.0000 1.0000
57 [anonymized] 2019-04-30 12:05 1.0.0 mashed mashrooms logistic-regression 1.0000 1.0000
189 [anonymized] 2019-04-30 12:01 1.0.0 grzybki NB naive-bayes 0.9886 0.9792
56 [anonymized] 2019-04-30 11:54 1.0.0 grzybki logistic-regression 1.0000 1.0000
55 [anonymized] 2019-04-30 11:35 1.0.0 knn knn 1.0000 1.0000
188 [anonymized] 2019-04-30 11:13 1.0.0 NB naive-bayes 0.9886 0.9792
135 Artur Nowakowski 2019-04-30 09:17 1.0.0 KNN knn 1.0000 0.9988
54 [anonymized] 2019-04-30 08:30 1.0.0 rozwiazanie na wiele zmiennych 1.0000 1.0000
53 [anonymized] 2019-04-29 19:09 1.0.0 logistyczne grzybki v1 logistic-regression 1.0000 1.0000
328 [anonymized] 2019-04-29 13:17 1.0.0 simple regression logistic-regression N/A 0.5110
290 [anonymized] 2019-04-29 12:45 1.0.0 Naive Bayes naive-bayes 0.9066 0.9100
155 [anonymized] 2019-04-29 12:30 1.0.0 Gaussian naive bayes naive-bayes python scikit-learn umz-2019-challenge N/A 0.9931
52 [anonymized] 2019-04-29 12:20 1.0.0 3nn, 5columns python scikit-learn knn umz-2019-challenge N/A 1.0000
51 [anonymized] 2019-04-29 12:20 1.0.0 knn knn 1.0000 1.0000
358 [anonymized] 2019-04-29 12:16 1.0.0 mushrooms logisticreg logistic-regression umz-2019-challenge N/A N/A
50 [anonymized] 2019-04-29 09:21 1.0.0 knn knn 1.0000 1.0000
49 [anonymized] 2019-04-28 20:36 1.0.0 Logistic regression using OneHotEncoder logistic-regression 1.0000 1.0000
237 [anonymized] 2019-04-28 20:29 1.0.0 Logistic regression with enc.transform 0.9432 0.9458
48 [anonymized] 2019-04-28 16:14 1.0.0 7param logreg python logistic-regression scikit-learn umz-2019-challenge N/A 1.0000
47 [anonymized] 2019-04-28 15:08 1.0.0 Logistic regression logistic-regression umz-2019-challenge 1.0000 1.0000
232 [anonymized] 2019-04-28 14:52 1.0.0 My solution logistic-regression 0.9432 0.9481
46 [anonymized] 2019-04-27 19:16 1.0.0 KNN solution knn 1.0000 1.0000
289 [anonymized] 2019-04-27 16:09 1.0.0 Naive Bayes naive-bayes 0.9066 0.9100
242 [anonymized] 2019-04-27 16:08 1.0.0 logistic regression logistic-regression 0.9407 0.9435
45 [anonymized] 2019-04-26 09:27 1.0.0 logistic regression logistic-regression 1.0000 1.0000
44 [anonymized] 2019-04-25 20:34 1.0.0 Logistic regression logistic-regression 1.0000 1.0000
333 [anonymized] 2019-04-25 20:22 1.0.0 jeszcze jedna kolumna 1.0000 0.4925
134 [anonymized] 2019-04-25 20:21 1.0.0 jeszcze jedna kolumna logistic-regression 1.0000 0.9988
340 [anonymized] 2019-04-25 20:20 1.0.0 jeszcze jedna kolumna 1.0000 0.3091
339 [anonymized] 2019-04-25 20:17 1.0.0 rozwiazanie kilka kolumn usuniete 1.0000 0.3945
327 [anonymized] 2019-04-25 19:28 1.0.0 Pierwsza proba logistic-regression 0.5303 0.5213
43 [anonymized] 2019-04-25 16:06 1.0.0 my solution logistic-regression 1.0000 1.0000
231 [anonymized] 2019-04-25 15:53 1.0.0 rozwiazanie dla wielu cech logistic-regression 0.9369 0.9481
311 [anonymized] 2019-04-25 15:18 1.0.0 rozwiazanie dla jednej zmiennej 0.7740 0.7463
303 [anonymized] 2019-04-25 15:17 1.0.0 RozwiazanieGrzybki logistic-regression 0.9167 0.9066
133 [anonymized] 2019-04-25 14:13 1.0.0 sezon na pieczarki logistic-regression 1.0000 0.9988
42 [anonymized] 2019-04-25 14:12 1.0.0 Dzień Dobry logistic-regression umz-2019-challenge 1.0000 1.0000
41 [anonymized] 2019-04-25 01:17 1.0.0 sąsiedzi knn umz-2019-challenge 1.0000 1.0000
187 [anonymized] 2019-04-25 01:11 1.0.0 naiwniaczek naive-bayes 0.9886 0.9792
40 [anonymized] 2019-04-25 00:58 1.0.0 atlas grzybów logistic-regression umz-2019-challenge 1.0000 1.0000
39 [anonymized] 2019-04-24 10:45 1.0.0 finished knn knn 1.0000 1.0000
230 [anonymized] 2019-04-24 09:24 1.0.0 UMZ2019-04 - Logistic regression logistic-regression 0.9369 0.9481
288 [anonymized] 2019-04-24 08:33 1.0.0 finished naive bayes naive-bayes 0.9066 0.9100
38 [anonymized] 2019-04-24 02:26 1.0.0 RogLeg logistic-regression 1.0000 1.0000
37 [anonymized] 2019-04-21 19:56 1.0.0 K nearest neighbors knn 1.0000 1.0000
36 [anonymized] 2019-04-18 13:25 1.0.0 logistic_reg logistic-regression umz-2019-challenge 1.0000 1.0000
258 [anonymized] 2019-04-18 13:09 1.0.0 pieczarki logistic-regression 0.9268 0.9158
196 [anonymized] 2019-04-18 13:04 1.0.0 my mushroom solution logistic-regression 0.9722 0.9654
35 [anonymized] 2019-04-17 05:37 1.0.0 k nearest neighbors solution knn 1.0000 1.0000
34 [anonymized] 2019-04-16 20:45 1.0.0 logistic reg solution logistic-regression umz-2019-challenge 1.0000 1.0000
287 [anonymized] 2019-04-16 15:23 1.0.0 Naive bayes naive-bayes 0.9066 0.9100
229 [anonymized] 2019-04-16 15:17 1.0.0 Logistic regression logistic-regression 0.9432 0.9481
206 [anonymized] 2019-04-16 14:53 1.0.0 rozwiazanie2 logistic-regression 0.9419 0.9493
286 [anonymized] 2019-04-16 14:52 1.0.0 mushroom bayes naive-bayes 0.9066 0.9100
285 [anonymized] 2019-04-16 14:47 1.0.0 mushroom naive Bayes solution naive-bayes 0.9066 0.9100
284 [anonymized] 2019-04-16 14:47 1.0.0 my solution naive-bayes umz-2019-challenge 0.9066 0.9100
228 [anonymized] 2019-04-16 14:12 1.0.0 mushroom logistic-regression 0.9432 0.9481
227 [anonymized] 2019-04-16 14:05 1.0.0 my mushrooms solution logistic-regression 0.9432 0.9481
226 [anonymized] 2019-04-16 14:03 1.0.0 my solution logistic-regression umz-2019-challenge 0.9432 0.9481
33 [anonymized] 2019-04-16 13:18 1.0.0 16.04.2019. 15.17 logistic-regression umz-2019-challenge 1.0000 1.0000
180 [anonymized] 2019-04-16 12:57 1.0.0 out.tsv logistic-regression 0.9886 0.9839
132 [anonymized] 2019-04-16 12:46 1.0.0 regresja logistyczna 1 logistic-regression umz-2019-challenge 1.0000 0.9988
32 [anonymized] 2019-04-16 11:53 1.0.0 knn commit uno knn umz-2019-challenge 1.0000 1.0000
225 [anonymized] 2019-04-16 10:54 1.0.0 Cleanup2 logistic-regression 0.9432 0.9481
283 [anonymized] 2019-04-16 09:20 1.0.0 Naive bayes solution naive-bayes 0.9066 0.9100
31 [anonymized] 2019-04-15 21:35 1.0.0 Solution mushrooms KNN knn 1.0000 1.0000
150 [anonymized] 2019-04-15 21:27 1.0.0 Solution mushrooms Naive-Bayes naive-bayes 0.9924 0.9954
205 [anonymized] 2019-04-15 21:26 1.0.0 Solution mushrooms Naive-Bayes naive-bayes 0.9407 0.9493
236 [anonymized] 2019-04-15 19:31 1.0.0 Logistic regression solution logistic-regression 0.9432 0.9458
30 [anonymized] 2019-04-15 16:21 1.0.0 k nearest neighbors knn 1.0000 1.0000
29 [anonymized] 2019-04-15 15:59 1.0.0 Solution mushrooms logistic logistic-regression 1.0000 1.0000
28 [anonymized] 2019-04-15 12:33 1.0.0 KNN knn 1.0000 1.0000
27 [anonymized] 2019-04-15 11:45 1.0.0 knn for n=3 knn 1.0000 1.0000
282 [anonymized] 2019-04-15 08:23 1.0.0 naive bayes commit uno naive-bayes umz-2019-challenge 0.9066 0.9100
281 [anonymized] 2019-04-10 18:34 1.0.0 Bayes second attempt naive-bayes umz-2019-challenge 0.9066 0.9100
224 [anonymized] 2019-04-10 18:23 1.0.0 Logistic regression logistic-regression umz-2019-challenge 0.9432 0.9481
253 Artur Nowakowski 2019-04-09 15:55 1.0.0 naive bayes naive-bayes 0.9217 0.9181
280 [anonymized] 2019-04-09 15:55 1.0.0 naive bayes naive-bayes 0.9066 0.9100
223 [anonymized] 2019-04-09 15:34 1.0.0 Commit grzyby logistic-regression 0.9369 0.9481
222 [anonymized] 2019-04-09 09:52 1.0.0 finished logistic regression with sklearn logistic-regression 0.9432 0.9481
221 [anonymized] 2019-04-08 13:02 1.0.0 logistic regression commit uno logistic-regression umz-2019-challenge 0.9432 0.9481
220 [anonymized] 2019-04-07 17:54 1.0.0 i donot like mushrooms logistic-regression logistic-regression 0.9444 0.9481
219 [anonymized] 2019-04-07 17:48 1.0.0 mushroomhead solution logistic-regression 0.9444 0.9481
179 [anonymized] 2019-04-04 20:18 1.0.0 naive bayes one column naive-bayes 0.9886 0.9839
247 [anonymized] 2019-04-04 20:14 1.0.0 naive bayes naive-bayes 0.9457 0.9331
279 [anonymized] 2019-04-04 13:24 1.0.0 Naive Bayes naive-bayes 0.9066 0.9100
218 [anonymized] 2019-04-02 16:25 1.0.0 Logistic regression mushrooms logistic-regression 0.9432 0.9481
217 [anonymized] 2019-04-01 19:11 1.0.0 lr rm logistic-regression 0.9432 0.9481
199 Artur Nowakowski 2019-03-26 16:51 1.0.0 Logistic regression ready made logistic-regression 0.9571 0.9596
216 [anonymized] 2019-03-26 16:43 1.0.0 logistic regression ready-made logistic-regression 0.9432 0.9481
241 Artur Nowakowski 2019-03-26 16:02 1.0.0 Logistic regression ready made 0.9444 0.9446
26 [anonymized] 2019-03-24 14:37 1.0.0 Logistic regression logistic-regression 1.0000 1.0000
240 [anonymized] 2019-03-24 02:57 1.0.0 first attempt, logistic regression logistic-regression 0.9407 0.9446
278 [anonymized] 2018-02-23 23:55 1.0.0 naive bayes solution naive-bayes 0.9066 0.9100
25 [anonymized] 2018-02-23 23:43 1.0.0 knn knn 1.0000 1.0000
154 [anonymized] 2018-02-15 23:17 1.0.0 neural-network neural-network 0.9747 0.9931
153 [anonymized] 2018-02-15 23:07 1.0.0 neural-network 1.0000 0.9931
186 [anonymized] 2018-02-15 22:54 1.0.0 neural-network 1.0000 0.9804
234 [anonymized] 2018-02-15 22:52 1.0.0 neural-network 1.0000 0.9469
322 [anonymized] 2018-02-15 22:44 1.0.0 neural-network 1.0000 0.5652
323 [anonymized] 2018-02-15 21:19 1.0.0 neural-network 1.0000 0.5594
331 [anonymized] 2018-02-15 21:08 1.0.0 neural-network 1.0000 0.4960
336 [anonymized] 2018-02-15 20:46 1.0.0 neural-network 1.0000 0.4902
24 [anonymized] 2018-02-13 23:39 1.0.0 knn k=3 knn 1.0000 1.0000
182 [anonymized] 2018-02-13 23:36 1.0.0 knn k=1 1.0000 0.9827
181 [anonymized] 2018-02-13 23:31 1.0.0 naive-bayes naive-bayes python 0.9861 0.9827
131 [anonymized] 2018-02-13 23:26 1.0.0 logistic-regression python logistic-regression 1.0000 0.9988
318 [anonymized] 2018-02-13 23:25 1.0.0 logistic-regression 1.0000 0.6436
317 [anonymized] 2018-02-13 22:24 1.0.0 logistic-regression 0.6616 0.6436
17 [anonymized] 2018-01-29 15:14 1.0.0 bestacc-lowestk knn N/A 1.0000
16 [anonymized] 2018-01-29 15:12 1.0.0 bestacc-lowestk N/A 1.0000
22 [anonymized] 2018-01-29 14:59 1.0.0 bestacc-lowestk 0.9975 1.0000
357 [anonymized] 2018-01-29 14:57 1.0.0 bestacc-lowestk N/A N/A
130 [anonymized] 2018-01-29 14:46 1.0.0 bestacc-lowestk N/A 0.9988
129 [anonymized] 2018-01-29 14:35 1.0.0 bestacc-lowestk N/A 0.9988
214 [anonymized] 2018-01-28 22:47 1.0.0 lr1 python logistic-regression 0.9432 0.9481
20 [anonymized] 2018-01-28 22:26 1.0.0 nn2 python neural-network 1.0000 1.0000
345 [anonymized] 2018-01-28 22:15 1.0.0 nn1 0.0000 0.0000
277 [anonymized] 2018-01-28 20:50 1.0.0 nb3 naive-bayes python 0.9066 0.9100
21 [anonymized] 2018-01-28 20:44 1.0.0 knn1 python knn 1.0000 1.0000
344 [anonymized] 2018-01-28 20:37 1.0.0 nb2 naive-bayes python 0.9066 0.0000
19 kaczla 2018-01-28 17:58 1.0.0 Simple neural network neural-network 1.0000 1.0000
23 [anonymized] 2018-01-27 15:53 1.0.0 mushroom neural network 2 neural-network 1.0000 1.0000
128 [anonymized] 2018-01-27 15:40 1.0.0 mushroom neural network neural-network 1.0000 0.9988
314 [anonymized] 2018-01-27 13:52 1.0.0 mushroom knn knn 0.6869 0.7301
316 [anonymized] 2018-01-27 13:44 1.0.0 mushroom naive bayes naive-bayes 0.6616 0.6840
335 [anonymized] 2018-01-27 13:02 1.0.0 mushroom logistic regression logistic-regression 0.6705 0.4913
15 [anonymized] 2018-01-27 03:02 1.0.0 UMZ-2017-10 neural-network 1.0000 1.0000
257 [anonymized] 2018-01-27 02:39 1.0.0 UMZ-2017-07 naive-bayes 0.9230 0.9158
144 [anonymized] 2018-01-27 02:35 1.0.0 UMZ-2017-08 knn 0.9975 0.9977
215 [anonymized] 2018-01-27 02:26 1.0.0 UMZ-2017-06 logistic-regression 0.9369 0.9481
355 [anonymized] 2018-01-27 02:25 1.0.0 UMZ-2017-06 N/A N/A
356 [anonymized] 2018-01-27 01:51 1.0.0 UMZ-2017-06 0.9369 N/A
354 [anonymized] 2018-01-27 01:37 1.0.0 UMZ-2017-06 0.9369 N/A
353 [anonymized] 2018-01-27 01:21 1.0.0 UMZ-2017-06 0.9369 N/A
352 [anonymized] 2018-01-27 01:19 1.0.0 UMZ-2017-06 0.9369 N/A
351 [anonymized] 2018-01-27 01:15 1.0.0 UMZ-2017-06 0.9369 N/A
18 [anonymized] 2018-01-24 19:56 1.0.0 neural-network neural-network 1.0000 1.0000
127 [anonymized] 2018-01-23 23:35 1.0.0 siec neuronowa neural-network 1.0000 0.9988
13 [anonymized] 2018-01-22 10:34 1.0.0 Neural network for classification v8 neural-network 1.0000 1.0000
202 [anonymized] 2018-01-21 17:17 1.0.0 Neural network for classification v7 0.9571 0.9516
201 [anonymized] 2018-01-21 17:12 1.0.0 Neural network for classification v6 0.9583 0.9516
249 [anonymized] 2018-01-21 16:59 1.0.0 Neural network for classification v5 0.9306 0.9308
250 [anonymized] 2018-01-21 16:42 1.0.0 Neural network for classification v4 0.9343 0.9296
248 [anonymized] 2018-01-21 16:39 1.0.0 Neural network for classification v3 0.9369 0.9319
252 [anonymized] 2018-01-21 16:22 1.0.0 Neural network for classification v2 0.9268 0.9204
313 [anonymized] 2018-01-21 15:09 1.0.0 Neural network for classification v1 0.7159 0.7301
276 [anonymized] 2018-01-20 16:21 1.0.0 mushroms - bayes naive-bayes 0.9066 0.9100
14 [anonymized] 2018-01-20 15:41 1.0.0 mushroms - knn knn 1.0000 1.0000
204 [anonymized] 2018-01-20 15:27 1.0.0 mushroms - RegLog logistic-regression 0.9419 0.9493
213 [anonymized] 2018-01-20 14:54 1.0.0 Regresja logistyczna - mushroms1 logistic-regression 0.9369 0.9481
243 [anonymized] 2018-01-19 21:10 1.0.0 Zadanie 009 z kodem programu v1.0 ready-made logistic-regression 2-dimensional 0.9470 0.9423
12 [anonymized] 2018-01-15 16:50 1.0.0 knn mushrooms knn 1.0000 1.0000
273 [anonymized] 2018-01-15 16:24 1.0.0 bayeas naive-bayes 0.9066 0.9100
274 [anonymized] 2018-01-15 16:20 1.0.0 reglog with code logistic-regression 0.9066 0.9100
272 [anonymized] 2018-01-14 18:56 1.0.0 bayeas naive-bayes 0.9066 0.9100
239 [anonymized] 2018-01-14 18:38 1.0.0 hello linear-regression 0.9407 0.9446
275 [anonymized] 2018-01-14 13:29 1.0.0 Bayes naive-bayes N/A 0.9100
11 [anonymized] 2018-01-14 13:28 1.0.0 KNN knn N/A 1.0000
10 [anonymized] 2018-01-14 13:17 1.0.0 Neural network neural-network N/A 1.0000
125 [anonymized] 2018-01-14 13:15 1.0.0 Neural network N/A 0.9988
185 [anonymized] 2018-01-14 13:06 1.0.0 Back to approach with int mapping N/A 0.9804
326 [anonymized] 2018-01-14 12:54 1.0.0 one hot vectors with inner join N/A 0.5283
337 [anonymized] 2018-01-14 12:52 1.0.0 One hot vectors from pandas N/A 0.4879
167 [anonymized] 2018-01-14 12:41 1.0.0 naiwny bayes naive-bayes 0.9811 0.9885
325 [anonymized] 2018-01-14 12:38 1.0.0 Neural network with changed input set N/A 0.5375
124 [anonymized] 2018-01-14 12:35 1.0.0 k najblizszych sasiadow knn 1.0000 0.9988
321 [anonymized] 2018-01-14 12:35 1.0.0 Neural network with one hot vectors as input layer N/A 0.5663
320 [anonymized] 2018-01-14 12:33 1.0.0 Neural network with one hot vectors as input layer N/A 0.5698
126 [anonymized] 2018-01-14 12:15 1.0.0 regresja logistyczna na dowolnej liczbie cech ready-made logistic-regression multidimensional 1.0000 0.9988
152 [anonymized] 2018-01-14 10:51 1.0.0 regresja logistyczna na 2 cechach ready-made logistic-regression 2-dimensional 0.9962 0.9931
200 [anonymized] 2018-01-13 20:58 1.0.0 Neural Network Classification neural-network 0.9710 0.9539
350 [anonymized] 2018-01-13 20:44 1.0.0 Neural Network Classification N/A N/A
8 [anonymized] 2018-01-13 18:52 1.0.0 neural with more neurons neural-network N/A 1.0000
174 [anonymized] 2018-01-13 18:41 1.0.0 neural network neural-network N/A 0.9862
143 [anonymized] 2018-01-08 16:38 1.0.0 knn knn N/A 0.9977
256 [anonymized] 2018-01-08 16:30 1.0.0 nb naive-bayes N/A 0.9158
255 [anonymized] 2018-01-08 16:30 1.0.0 nb N/A 0.9158
212 [anonymized] 2018-01-08 16:14 1.0.0 sol1 logistic-regression N/A 0.9481
147 [anonymized] 2018-01-07 22:00 1.0.0 KNN v6 0.9975 0.9965
149 [anonymized] 2018-01-07 21:52 1.0.0 KNN v5 first 13 0.9975 0.9954
146 [anonymized] 2018-01-07 21:47 1.0.0 KNN v4 first 12 0.9975 0.9965
158 [anonymized] 2018-01-07 21:43 1.0.0 KNN v3 first half 0.9962 0.9919
193 [anonymized] 2018-01-07 21:38 1.0.0 KNN v2 second half 0.9609 0.9689
6 [anonymized] 2018-01-07 21:17 1.0.0 KNN v1 knn 1.0000 1.0000
271 [anonymized] 2018-01-07 21:11 1.0.0 NaiveBayes v1 naive-bayes 0.9066 0.9100
238 [anonymized] 2018-01-07 21:00 1.0.0 RegLog v1 logistic-regression 0.9407 0.9446
9 [anonymized] 2018-01-07 15:08 1.0.0 knn knn 1.0000 1.0000
254 [anonymized] 2018-01-07 13:10 1.0.0 logistic-regression mushrom logistic-regression 0.9167 0.9170
5 kaczla 2018-01-04 19:04 1.0.0 K nearest neighbors, use MurmurHash3 for hashing knn 1.0000 1.0000
305 kaczla 2018-01-04 18:45 1.0.0 Naive bayes, use MurmurHash3 for hashing naive-bayes 0.8725 0.8962
302 kaczla 2018-01-04 18:33 1.0.0 Logistic regression, use MurmurHash3 for hashing logistic-regression 0.9268 0.9066
211 [anonymized] 2018-01-04 17:34 1.0.0 Logic road to intoxication l2 logistic-regression 0.9419 0.9481
203 [anonymized] 2018-01-04 17:32 1.0.0 Logical path to intoxication logistic-regression 0.9419 0.9493
7 [anonymized] 2018-01-04 17:29 1.0.0 knn knn 1.0000 1.0000
4 [anonymized] 2018-01-04 17:13 1.0.0 Avoid nearby toadstools! knn 1.0000 1.0000
270 [anonymized] 2018-01-04 16:50 1.0.0 GaussianNB naive-bayes 0.9066 0.9100
269 [anonymized] 2018-01-03 21:35 1.0.0 Bayes is not so naive naive-bayes 0.9066 0.9100
210 [anonymized] 2018-01-03 18:01 1.0.0 logisticRegression, mushrooms logistic-regression 0.9432 0.9481
349 [anonymized] 2018-01-02 17:34 1.0.0 my solution self-made knn N/A N/A
324 [anonymized] 2017-12-29 12:06 1.0.0 nltk naivebayes naive-bayes 0.5480 0.5409
3 [anonymized] 2017-12-27 20:35 1.0.0 Task 8. knn 1.0000 1.0000
268 [anonymized] 2017-12-27 20:00 1.0.0 Task 7. naive-bayes 0.9066 0.9100
2 [anonymized] 2017-12-27 00:18 1.0.0 Task 6. logistic-regression 1.0000 1.0000
209 [anonymized] 2017-12-20 16:26 1.0.0 Edible shrooms logistic regression logistic-regression 0.9369 0.9481
315 [anonymized] 2017-12-18 17:03 1.0.0 Naive Bayes fixed naive-bayes 0.6616 0.6840
334 [anonymized] 2017-12-18 16:57 1.0.0 Logistic Regression fix logistic-regression 0.6705 0.4913
312 [anonymized] 2017-12-18 16:51 1.0.0 KNN fixed knn 0.6869 0.7301
341 [anonymized] 2017-12-14 11:55 1.0.0 KNN knn 0.0972 0.0796
343 [anonymized] 2017-12-14 11:30 1.0.0 Naive Bayes naive-bayes 0.0013 0.0000
342 [anonymized] 2017-12-14 11:06 1.0.0 Logical Regression logistic-regression 0.0088 0.0127
348 [anonymized] 2017-12-14 11:02 1.0.0 Logistic Regression logistic-regression N/A N/A
208 [anonymized] 2017-12-11 17:33 1.0.0 Fancy mapping to asci logistic-regression N/A 0.9481
1 [anonymized] 2017-12-11 17:23 1.0.0 K nearest neighbors python ready-made knn 1.0000 1.0000
267 [anonymized] 2017-12-11 17:22 1.0.0 Naive-bayes naive-bayes N/A 0.9100
207 [anonymized] 2017-12-11 17:18 1.0.0 Logstic regression logistic-regression N/A 0.9481
266 [anonymized] 2017-12-11 14:00 1.0.0 Simple naive Bayes naive-bayes python ready-made 0.9040 0.9100
176 [anonymized] 2017-12-11 13:48 1.0.0 Simple logistic regression python ready-made logistic-regression 0.9861 0.9850
329 p/tlen 2017-12-11 08:24 1.0.0 all edible stupid 0.5126 0.5098
347 p/tlen 2017-12-11 08:21 1.0.0 init stupid N/A N/A